organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-[2,6-Dichloro-4-(trifluoromethyl)phenyl]-5-iodo-4-trifluoromethylsulfinyl-1*H*-pyrazole-3-carbonitrile

Ding-Xin Jiang and Han-Hong Xu*

Key Laboratory of Natural Pesticides and Chemical Biology of the Ministry of, Education, South China Agricultural University, Guangzhou 510642, People's Republic of China

Correspondence e-mail: hhxu@scau.edu.cn

Received 15 June 2009; accepted 29 June 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.007 Å; R factor = 0.041; wR factor = 0.111; data-to-parameter ratio = 13.3.

In the title compound, $C_{12}H_2Cl_2F_6IN_3OS$, the dihedral angle between the planes of the benzene and pyrazole rings is 77.8 (2)°. In the crystal, a short I···N contact of 2.897 (5) Å occurs.

Related literature

For related structures containing phenylpyrazole, see: Shi *et al.* (2009); Tang, Zhong, Li & Hu (2005). Tang, Zhong, Lin, Hu & Shi (2005).

Experimental

Crystal data

C₁₂H₂Cl₂F₆IN₃OS $M_r = 548.03$ Monoclinic, $P2_1/c$ a = 9.5879 (3) Å b = 13.7798 (4) Å c = 14.3145 (5) Å $\beta = 107.400$ (3)°

Data collection

Oxford Diffraction Gemini (Cu) X-ray Ultra diffractometer Absorption correction: analytical (*CrysAlis RED*; Oxford Diffraction 2006) $T_{min} = 0.016, T_{max} = 0.213$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.111$ S = 1.133132 reflections $V = 1804.68 (10) \text{ Å}^{3}$ Z = 4Cu K\alpha radiation $\mu = 18.41 \text{ mm}^{-1}$ T = 100 K0.45 \times 0.27 \times 0.19 mm

8203 measured reflections 3132 independent reflections 3065 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.041$

235 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.77$ e Å⁻³ $\Delta \rho_{min} = -1.25$ e Å⁻³

Data collection: *CrysAlis CCD* (Oxford Diffraction 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEX* (McArdle, 1995); software used to prepare material for publication: *SHELXL97*.

This project was sponsored by the Key Project of the Chinese Ministry of Education (No. 209092) and the President's Fund of South China Agricultural University (No. 2008 K038).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2972).

References

- McArdle, P. (1995). J. Appl. Cryst. 28, 65.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, A.-E., Hou, Y.-J., Zhang, Y.-M., Hou, G.-F. & Gao, J.-S. (2009). Acta Cryst. E65, 0690.
- Tang, R.-Y., Zhong, P., Li, S.-Y. & Hu, M.-L. (2005). Acta Cryst. E61, o1564– 01565.
- Tang, R.-Y., Zhong, P., Lin, Q.-L., Hu, M.-L. & Shi, Q. (2005). Acta Cryst. E61, 04374–04375.

supplementary materials

Acta Cryst. (2009). E65, o1774 [doi:10.1107/S1600536809025082]

1-[2,6-Dichloro-4-(trifluoromethyl)phenyl]-5-iodo-4-trifluoromethylsulfinyl-1*H*-pyrazole-3-carbonitrile

D.-X. Jiang and H.-H. Xu

Comment

The molecular structure of title compound, $C_{12}H_2Cl_2F_6IN_3OS$, is shown in Fig.1. The dihedral angle between the benzene ring and the pyrazole ring is 77.8 (2)°, while the corresponding ones in the two related compounds, $C_{12}H_4C_{12}F_6N_4S$ (Tang, Zhong, Li & Hu, 2005) and $C_{22}H_8C_{14}F_6N_8S_2$ (Tang, Zhong, Lin, Hu & Shi, 2005), are 83.2 (1)° and 88.2 (1)°, respectively.

Experimental

98% Fipronil (4.4 g, 10 mmol) was resolved in 40 ml chloroform in a 100 ml round bottom flask equipped with magnetic stirrer and a calcium chloride tube. Then iodine (3.6 g,14 mmol) was added into the solution. Half an hour later *tert*-butyl nitrite(1.43 g) was added into the solution and the mixture was heated under reflux for 2 h. Then it was left at room temperature overnight. The reaction mixture was filtered. Then the filtrate was evaporated *in vacuo*. The solid residue was purified by chromatography eluting using petroleum/ethyl acetate (4:1) and further recrystallized from toluene/hexane to afford colourless crystals. Yield: 4.70 g (86%).

Refinement

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitary radii.

1-[2,6-Dichloro-4-(trifluoromethyl)phenyl]-5-iodo-4-trifluoromethylsulfinyl-1H-pyrazole-3-carbonitrile

 Crystal data

 $C_{12}H_2Cl_2F_6IN_3OS$ $F_{000} = 1040$
 $M_r = 548.03$ $D_x = 2.017 \text{ Mg m}^{-3}$

 Monoclinic, $P2_1/c$ Cu Ka radiation, $\lambda = 1.54184 \text{ Å}$

 Hall symbol: -P 2ybc
 Cell parameters from 3132 reflections

 a = 9.5879 (3) Å
 $\theta = 4.6-67.0^{\circ}$

<i>b</i> = 13.7798 (4) Å
c = 14.3145 (5) Å
$\beta = 107.400 \ (3)^{\circ}$
$V = 1804.68 (10) \text{ Å}^3$
Z = 4

Data collection

Oxford Diffraction Gemini (Cu) X-ray Ultra diffractometer	3132 independent reflections
Radiation source: fine-focus sealed tube	3065 reflections with $I > 2\sigma(I)$
Monochromator: mirror	$R_{\rm int} = 0.041$
T = 100 K	$\theta_{\text{max}} = 67.0^{\circ}$
ω and π scans	$\theta_{\min} = 4.6^{\circ}$
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction 2006)	$h = -10 \rightarrow 11$
$T_{\min} = 0.016, T_{\max} = 0.213$	$k = -16 \rightarrow 15$
8203 measured reflections	$l = -17 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.111$	$w = 1/[\sigma^2(F_o^2) + (0.0636P)^2 + 4.9895P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.13	$(\Delta/\sigma)_{\rm max} = 0.001$
3132 reflections	$\Delta \rho_{max} = 0.77 \text{ e } \text{\AA}^{-3}$
235 parameters	$\Delta \rho_{\rm min} = -1.25 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct	

 $\mu = 18.41 \text{ mm}^{-1}$ T = 100 KPrism, colorless

 $0.45 \times 0.27 \times 0.19 \text{ mm}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

y

x

Z

 $U_{\rm iso}*/U_{\rm eq}$

I1	0.32209 (3)	0.65606 (2)	0.31318 (2)	0.02325 (15)
Cl1	0.49232 (14)	0.42087 (8)	0.14823 (9)	0.0336 (3)
Cl2	0.37074 (16)	0.80256 (8)	0.09630 (9)	0.0364 (3)
S1	0.70639 (13)	0.70720 (8)	0.47083 (8)	0.0257 (3)
O1	0.8422 (4)	0.7630(3)	0.4932 (3)	0.0360 (8)
N1	0.5348 (4)	0.6307 (3)	0.1980 (3)	0.0215 (8)
N2	0.6758 (4)	0.6311 (4)	0.1956 (3)	0.0312 (10)
N3	1.0327 (6)	0.6582 (4)	0.3373 (4)	0.0474 (15)
C1	0.1794 (5)	0.5669 (3)	-0.0465 (3)	0.0238 (10)
C2	0.2659 (5)	0.4911 (3)	0.0021 (3)	0.0230 (9)
H2A	0.2448	0.4273	-0.0183	0.028*
C3	0.3855 (5)	0.5134 (3)	0.0823 (3)	0.0219 (9)
C4	0.4171 (5)	0.6096 (3)	0.1111 (3)	0.0217 (9)
C5	0.3304 (6)	0.6833 (4)	0.0603 (4)	0.0263 (10)
C6	0.2084 (6)	0.6628 (3)	-0.0189 (4)	0.0279 (11)
H6A	0.1480	0.7124	-0.0523	0.034*
C7	0.0517 (6)	0.5443 (4)	-0.1351 (4)	0.0304 (11)
C8	0.5210 (5)	0.6523 (3)	0.2870 (4)	0.0182 (9)
C9	0.6611 (5)	0.6671 (3)	0.3484 (4)	0.0228 (10)
C10	0.7517 (6)	0.6527 (3)	0.2873 (4)	0.0276 (11)
C11	0.9089 (6)	0.6571 (4)	0.3153 (5)	0.0350 (14)
C12	0.7590 (6)	0.5852 (4)	0.5261 (4)	0.0391 (13)
F1	0.0028 (4)	0.4545 (3)	-0.1333 (3)	0.0488 (9)
F2	0.0883 (4)	0.5527 (3)	-0.2176 (2)	0.0439 (8)
F3	-0.0603 (4)	0.6042 (3)	-0.1430 (3)	0.0487 (9)
F4	0.6443 (4)	0.5270 (2)	0.4989 (3)	0.0503 (9)
F5	0.7988 (5)	0.5949 (3)	0.6227 (3)	0.0585 (11)
F6	0.8683 (4)	0.5472 (3)	0.5007 (3)	0.0624 (11)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0165 (2)	0.0296 (2)	0.0220 (2)	-0.00092 (10)	0.00320 (13)	-0.00227 (10)
Cl1	0.0314 (6)	0.0221 (6)	0.0387 (7)	0.0056 (5)	-0.0026 (5)	0.0011 (5)
Cl2	0.0574 (8)	0.0171 (6)	0.0285 (6)	-0.0045 (5)	0.0033 (5)	-0.0014 (4)
S1	0.0264 (6)	0.0222 (6)	0.0230 (6)	-0.0021 (4)	-0.0008 (4)	-0.0002 (4)
O1	0.038 (2)	0.0290 (19)	0.036 (2)	-0.0106 (16)	0.0032 (16)	-0.0038 (16)
N1	0.0142 (18)	0.0247 (19)	0.0225 (19)	-0.0027 (16)	0.0008 (15)	-0.0014 (16)
N2	0.025 (2)	0.034 (2)	0.035 (2)	-0.0073 (17)	0.010 (2)	-0.0099 (19)
N3	0.021 (3)	0.064 (4)	0.058 (3)	-0.011 (2)	0.013 (2)	-0.035 (3)
C1	0.025 (2)	0.024 (2)	0.021 (2)	-0.0014 (19)	0.0050 (19)	-0.0004 (19)
C2	0.024 (2)	0.019 (2)	0.024 (2)	-0.0002 (18)	0.0043 (19)	-0.0038 (18)
C3	0.022 (2)	0.020 (2)	0.023 (2)	-0.0009 (18)	0.0050 (18)	-0.0004 (18)
C4	0.019 (2)	0.023 (2)	0.021 (2)	-0.0055 (18)	0.0039 (18)	-0.0053 (18)
C5	0.040 (3)	0.018 (2)	0.020 (2)	-0.002 (2)	0.007 (2)	-0.0022 (19)
C6	0.034 (3)	0.022 (2)	0.024 (2)	0.0029 (19)	0.002 (2)	0.0020 (18)
C7	0.025 (2)	0.031 (3)	0.030 (3)	0.003 (2)	0.000 (2)	-0.004 (2)
C8	0.010 (2)	0.018 (2)	0.025 (2)	0.0004 (15)	0.0038 (18)	0.0011 (16)

supplementary materials

C9	0.021 (2)	0.017 (2)	0.027 (3)	-0.0013 (17)	0.002 (2)	-0.0014 (17)
C10	0.019 (3)	0.027 (3)	0.036 (3)	-0.0075 (18)	0.007 (2)	-0.009 (2)
C11	0.025 (3)	0.038 (3)	0.043 (3)	-0.008 (2)	0.012 (2)	-0.022 (2)
C12	0.034 (3)	0.029 (3)	0.042 (3)	-0.002 (2)	-0.008 (2)	0.009 (2)
F1	0.047 (2)	0.0386 (18)	0.0447 (19)	-0.0169 (16)	-0.0112 (15)	-0.0053 (15)
F2	0.0371 (18)	0.069 (2)	0.0202 (14)	0.0001 (16)	-0.0001 (12)	-0.0055 (15)
F3	0.0321 (17)	0.055 (2)	0.048 (2)	0.0130 (16)	-0.0052 (15)	-0.0163 (16)
F4	0.056 (2)	0.0313 (17)	0.053 (2)	-0.0147 (16)	0.0008 (17)	0.0124 (15)
F5	0.070 (3)	0.054 (2)	0.0337 (18)	-0.0074 (19)	-0.0127 (17)	0.0158 (16)
F6	0.047 (2)	0.049 (2)	0.084 (3)	0.0264 (18)	0.009 (2)	0.021 (2)

Geometric parameters (Å, °)

I1—C8	2.051 (4)	C2—H2A	0.9300
Cl1—C3	1.728 (5)	C3—C4	1.394 (6)
Cl2—C5	1.731 (5)	C4—C5	1.375 (7)
S1—O1	1.463 (4)	C5—C6	1.392 (7)
S1—C9	1.764 (5)	C6—H6A	0.9300
S1—C12	1.863 (6)	C7—F1	1.327 (6)
N1—C8	1.353 (6)	C7—F3	1.332 (6)
N1—N2	1.363 (6)	C7—F2	1.333 (6)
N1—C4	1.438 (6)	C8—C9	1.382 (7)
N2-C10	1.330 (7)	C9—C10	1.419 (7)
N3—C11	1.134 (8)	C10—C11	1.440 (8)
C1—C2	1.384 (7)	C12—F6	1.316 (8)
C1—C6	1.384 (7)	C12—F4	1.322 (7)
C1—C7	1.508 (6)	C12—F5	1.327 (7)
C2—C3	1.393 (7)		
O1—S1—C9	108.7 (2)	С5—С6—Н6А	120.8
O1—S1—C12	105.8 (2)	F1—C7—F3	107.4 (4)
C9—S1—C12	95.4 (2)	F1—C7—F2	106.6 (4)
C8—N1—N2	113.6 (4)	F3—C7—F2	106.9 (4)
C8—N1—C4	126.0 (4)	F1—C7—C1	112.2 (4)
N2—N1—C4	120.5 (4)	F3—C7—C1	112.0 (4)
C10—N2—N1	103.3 (4)	F2—C7—C1	111.4 (4)
C2-C1-C6	122.5 (5)	N1—C8—C9	106.3 (4)
C2—C1—C7	118.7 (4)	N1—C8—I1	122.4 (3)
C6—C1—C7	118.7 (5)	C9—C8—I1	131.3 (4)
C1—C2—C3	118.0 (4)	C8—C9—C10	104.2 (4)
C1—C2—H2A	121.0	C8—C9—S1	125.6 (4)
C3—C2—H2A	121.0	C10—C9—S1	129.9 (4)
C2—C3—C4	120.4 (4)	N2-C10-C9	112.6 (5)
C2—C3—C11	119.7 (4)	N2-C10-C11	120.1 (5)
C4—C3—C11	119.9 (4)	C9—C10—C11	127.2 (5)
C5—C4—C3	120.2 (4)	N3-C11-C10	178.4 (6)
C5—C4—N1	120.1 (4)	F6—C12—F4	109.8 (5)
C3—C4—N1	119.6 (4)	F6—C12—F5	108.9 (5)
C4—C5—C6	120.6 (4)	F4—C12—F5	108.8 (5)
C4—C5—Cl2	119.9 (4)	F6—C12—S1	112.3 (4)

C6—C5—Cl2	119.5 (4)	F4—C12—S1	109.1 (4)
C1—C6—C5	118.3 (5)	F5-C12-S1	107.9 (4)
C1—C6—H6A	120.8		
C8—N1—N2—C10	0.7 (6)	C2—C1—C7—F2	-94.0 (5)
C4—N1—N2—C10	-179.8 (4)	C6-C1-C7-F2	83.8 (6)
C6—C1—C2—C3	0.7 (7)	N2—N1—C8—C9	-0.7 (5)
C7—C1—C2—C3	178.4 (4)	C4—N1—C8—C9	179.9 (4)
C1—C2—C3—C4	-0.9 (7)	N2—N1—C8—I1	-179.5 (3)
C1—C2—C3—Cl1	177.4 (4)	C4—N1—C8—I1	1.1 (6)
C2—C3—C4—C5	-0.2 (7)	N1-C8-C9-C10	0.3 (5)
Cl1—C3—C4—C5	-178.5 (4)	I1—C8—C9—C10	178.9 (3)
C2—C3—C4—N1	175.7 (4)	N1-C8-C9-S1	174.4 (3)
Cl1—C3—C4—N1	-2.6 (6)	I1—C8—C9—S1	-6.9 (6)
C8—N1—C4—C5	75.7 (6)	O1—S1—C9—C8	-149.2 (4)
N2—N1—C4—C5	-103.6 (5)	C12—S1—C9—C8	102.1 (4)
C8—N1—C4—C3	-100.2 (6)	O1—S1—C9—C10	23.4 (5)
N2—N1—C4—C3	80.4 (6)	C12—S1—C9—C10	-85.3 (5)
C3—C4—C5—C6	1.6 (7)	N1—N2—C10—C9	-0.5 (6)
N1—C4—C5—C6	-174.3 (5)	N1—N2—C10—C11	178.0 (5)
C3—C4—C5—Cl2	-179.8 (4)	C8—C9—C10—N2	0.2 (6)
N1—C4—C5—Cl2	4.3 (6)	S1-C9-C10-N2	-173.6 (4)
C2—C1—C6—C5	0.7 (8)	C8—C9—C10—C11	-178.3 (5)
C7—C1—C6—C5	-177.1 (5)	S1-C9-C10-C11	7.9 (8)
C4—C5—C6—C1	-1.8 (8)	O1—S1—C12—F6	-50.8 (5)
Cl2—C5—C6—C1	179.6 (4)	C9—S1—C12—F6	60.4 (4)
C2C1	25.4 (6)	O1—S1—C12—F4	-172.7 (4)
C6—C1—C7—F1	-156.8 (5)	C9—S1—C12—F4	-61.5 (5)
C2—C1—C7—F3	146.3 (5)	O1—S1—C12—F5	69.2 (5)
C6—C1—C7—F3	-35.9 (7)	C9—S1—C12—F5	-179.6 (4)

